本部署使用的版本为kafka_2.8.0-0.8.0。
参考了http://blog.csdn.net/itleochen/article/details/17451455这篇博文; 并根据官网介绍http://kafka.apache.org/documentation.html#quickstart完成。 废话少说,直接上步骤 1.下载kafka_2.8.0-0.8.0.tar.gz https://archive.apache.org/dist/kafka/0.8.0/kafka_2.8.0-0.8.0.tar.gz 2.解压缩 tar -vxf kafka_2.8.0-0.8.0.tar.gz 3.修改配置文件 修改conf/server.properties host.name=192.168.110.129(修改为主机ip,不然服务器返回给客户端的是主机的hostname,客户端并不一定能够识别) 修改conf/zookeeper.properties 属性文件 dataDir=/usr/local/tmp/zookeeper (zookeeper临时数据文件) 4.启动zookeeper和kafka cd bin 启动zookeeper ./zookeeper-server-start.sh ../config/zookeeper.properties & (&推出命令行,服务守护执行) 启动kafka ./kafka-server-start.sh ../config/server.properties & 5.验证是否成功 *创建主题 ./kafka-create-topic.sh --partition 1 --replica 1 --zookeeper localhost:2181 --topic test 检查是否创建主题成功 ./kafka-list-topic.sh --zookeeper localhost:2181 *启动produce ./bin/kafka-console-producer.sh --broker-list 192.168.110.129:9092 --topic test *启动consumer ./kafka-console-consumer.sh --zookeeper localhost:2181 --topic test 6.关闭kafka和zookeeper ./kafka-server-stop.sh ../config/server.properties ./zookeeper-server-stop.sh 心得总结: 1.produce启动的时候参数使用的是kafka的端口而consumer启动的时候使用的是zookeeper的端口; 2.必须先创建topic才能使用; 3.topic本质是以文件的形式储存在zookeeper上的。
消费者
package com.kafka;import java.util.HashMap;import java.util.List;import java.util.Map;import java.util.Properties;import kafka.consumer.ConsumerConfig;import kafka.consumer.ConsumerIterator;import kafka.consumer.KafkaStream;import kafka.javaapi.consumer.ConsumerConnector;import kafka.serializer.StringDecoder;import kafka.utils.VerifiableProperties;public class KafkaConsumer{ private final ConsumerConnector consumer; private KafkaConsumer() { Properties props = new Properties(); // zookeeper 配置 props.put( "zookeeper.connect", "192.168.110.129:2181" ); // group 代表一个消费组 props.put( "group.id", "jd-group" ); // zk连接超时 props.put( "zookeeper.session.timeout.ms", "4000" ); props.put( "zookeeper.sync.time.ms", "200" ); props.put( "auto.commit.interval.ms", "1000" ); props.put( "auto.offset.reset", "smallest" ); // 序列化类 props.put( "serializer.class", "kafka.serializer.StringEncoder" ); ConsumerConfig config = new ConsumerConfig( props ); consumer = kafka.consumer.Consumer.createJavaConsumerConnector( config ); } void consume() { MaptopicCountMap = new HashMap (); topicCountMap.put( KafkaProducer.TOPIC, new Integer( 1 ) ); StringDecoder keyDecoder = new StringDecoder( new VerifiableProperties() ); StringDecoder valueDecoder = new StringDecoder( new VerifiableProperties() ); Map >> consumerMap = consumer.createMessageStreams( topicCountMap, keyDecoder, valueDecoder ); KafkaStream stream = consumerMap.get( KafkaProducer.TOPIC ).get( 0 ); ConsumerIterator it = stream.iterator(); while (it.hasNext()) System.out.println( it.next().message() ); } public static void main(String[] args) { new KafkaConsumer().consume(); }}
生产者
package com.kafka;import java.util.Properties;import kafka.javaapi.producer.Producer;import kafka.producer.KeyedMessage;import kafka.producer.ProducerConfig;/** * Hello world! * */public class KafkaProducer{ private final Producerproducer; public final static String TOPIC = "TEST-TOPIC"; private KafkaProducer() { Properties props = new Properties(); // 此处配置的是kafka的端口 props.put( "metadata.broker.list", "192.168.110.129:9092" ); // 配置value的序列化类 props.put( "serializer.class", "kafka.serializer.StringEncoder" ); // 配置key的序列化类 props.put( "key.serializer.class", "kafka.serializer.StringEncoder" ); // request.required.acks // 0, which means that the producer never waits for an acknowledgement from the broker (the same // behavior as 0.7). This option provides the lowest latency but the weakest durability guarantees // (some data will be lost when a server fails). // 1, which means that the producer gets an acknowledgement after the leader replica has received the // data. This option provides better durability as the client waits until the server acknowledges the // request as successful (only messages that were written to the now-dead leader but not yet // replicated will be lost). // -1, which means that the producer gets an acknowledgement after all in-sync replicas have received // the data. This option provides the best durability, we guarantee that no messages will be lost as // long as at least one in sync replica remains. props.put( "request.required.acks", "-1" ); producer = new Producer ( new ProducerConfig( props ) ); } void produce() { int messageNo = 1000; final int COUNT = 2000; while (messageNo < COUNT) { String key = String.valueOf( messageNo ); String data = "hello kafka message " + key; producer.send( new KeyedMessage ( TOPIC, key, data ) ); // System.out.println( data ); messageNo++; } } public static void main(String[] args) { new KafkaProducer().produce(); }}